3.7 \(\int \frac{A+B \log (e (\frac{a+b x}{c+d x})^n)}{(a g+b g x)^3} \, dx\)

Optimal. Leaf size=151 \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{2 b g^3 (a+b x)^2}+\frac{B d^2 n \log (a+b x)}{2 b g^3 (b c-a d)^2}-\frac{B d^2 n \log (c+d x)}{2 b g^3 (b c-a d)^2}+\frac{B d n}{2 b g^3 (a+b x) (b c-a d)}-\frac{B n}{4 b g^3 (a+b x)^2} \]

[Out]

-(B*n)/(4*b*g^3*(a + b*x)^2) + (B*d*n)/(2*b*(b*c - a*d)*g^3*(a + b*x)) + (B*d^2*n*Log[a + b*x])/(2*b*(b*c - a*
d)^2*g^3) - (A + B*Log[e*((a + b*x)/(c + d*x))^n])/(2*b*g^3*(a + b*x)^2) - (B*d^2*n*Log[c + d*x])/(2*b*(b*c -
a*d)^2*g^3)

________________________________________________________________________________________

Rubi [A]  time = 0.122887, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {2525, 12, 44} \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{2 b g^3 (a+b x)^2}+\frac{B d^2 n \log (a+b x)}{2 b g^3 (b c-a d)^2}-\frac{B d^2 n \log (c+d x)}{2 b g^3 (b c-a d)^2}+\frac{B d n}{2 b g^3 (a+b x) (b c-a d)}-\frac{B n}{4 b g^3 (a+b x)^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x)^3,x]

[Out]

-(B*n)/(4*b*g^3*(a + b*x)^2) + (B*d*n)/(2*b*(b*c - a*d)*g^3*(a + b*x)) + (B*d^2*n*Log[a + b*x])/(2*b*(b*c - a*
d)^2*g^3) - (A + B*Log[e*((a + b*x)/(c + d*x))^n])/(2*b*g^3*(a + b*x)^2) - (B*d^2*n*Log[c + d*x])/(2*b*(b*c -
a*d)^2*g^3)

Rule 2525

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{(a g+b g x)^3} \, dx &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{2 b g^3 (a+b x)^2}+\frac{(B n) \int \frac{b c-a d}{g^2 (a+b x)^3 (c+d x)} \, dx}{2 b g}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{2 b g^3 (a+b x)^2}+\frac{(B (b c-a d) n) \int \frac{1}{(a+b x)^3 (c+d x)} \, dx}{2 b g^3}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{2 b g^3 (a+b x)^2}+\frac{(B (b c-a d) n) \int \left (\frac{b}{(b c-a d) (a+b x)^3}-\frac{b d}{(b c-a d)^2 (a+b x)^2}+\frac{b d^2}{(b c-a d)^3 (a+b x)}-\frac{d^3}{(b c-a d)^3 (c+d x)}\right ) \, dx}{2 b g^3}\\ &=-\frac{B n}{4 b g^3 (a+b x)^2}+\frac{B d n}{2 b (b c-a d) g^3 (a+b x)}+\frac{B d^2 n \log (a+b x)}{2 b (b c-a d)^2 g^3}-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{2 b g^3 (a+b x)^2}-\frac{B d^2 n \log (c+d x)}{2 b (b c-a d)^2 g^3}\\ \end{align*}

Mathematica [A]  time = 0.162042, size = 114, normalized size = 0.75 \[ -\frac{2 \left (B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A\right )+\frac{B n \left (2 d^2 (a+b x)^2 \log (c+d x)+(b c-a d) (b (c-2 d x)-3 a d)-2 d^2 (a+b x)^2 \log (a+b x)\right )}{(b c-a d)^2}}{4 b g^3 (a+b x)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x)^3,x]

[Out]

-(2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]) + (B*n*((b*c - a*d)*(-3*a*d + b*(c - 2*d*x)) - 2*d^2*(a + b*x)^2*Lo
g[a + b*x] + 2*d^2*(a + b*x)^2*Log[c + d*x]))/(b*c - a*d)^2)/(4*b*g^3*(a + b*x)^2)

________________________________________________________________________________________

Maple [F]  time = 0.436, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( bgx+ag \right ) ^{3}} \left ( A+B\ln \left ( e \left ({\frac{bx+a}{dx+c}} \right ) ^{n} \right ) \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^3,x)

[Out]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^3,x)

________________________________________________________________________________________

Maxima [A]  time = 1.21237, size = 350, normalized size = 2.32 \begin{align*} \frac{1}{4} \, B n{\left (\frac{2 \, b d x - b c + 3 \, a d}{{\left (b^{4} c - a b^{3} d\right )} g^{3} x^{2} + 2 \,{\left (a b^{3} c - a^{2} b^{2} d\right )} g^{3} x +{\left (a^{2} b^{2} c - a^{3} b d\right )} g^{3}} + \frac{2 \, d^{2} \log \left (b x + a\right )}{{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} g^{3}} - \frac{2 \, d^{2} \log \left (d x + c\right )}{{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} g^{3}}\right )} - \frac{B \log \left (e{\left (\frac{b x}{d x + c} + \frac{a}{d x + c}\right )}^{n}\right )}{2 \,{\left (b^{3} g^{3} x^{2} + 2 \, a b^{2} g^{3} x + a^{2} b g^{3}\right )}} - \frac{A}{2 \,{\left (b^{3} g^{3} x^{2} + 2 \, a b^{2} g^{3} x + a^{2} b g^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^3,x, algorithm="maxima")

[Out]

1/4*B*n*((2*b*d*x - b*c + 3*a*d)/((b^4*c - a*b^3*d)*g^3*x^2 + 2*(a*b^3*c - a^2*b^2*d)*g^3*x + (a^2*b^2*c - a^3
*b*d)*g^3) + 2*d^2*log(b*x + a)/((b^3*c^2 - 2*a*b^2*c*d + a^2*b*d^2)*g^3) - 2*d^2*log(d*x + c)/((b^3*c^2 - 2*a
*b^2*c*d + a^2*b*d^2)*g^3)) - 1/2*B*log(e*(b*x/(d*x + c) + a/(d*x + c))^n)/(b^3*g^3*x^2 + 2*a*b^2*g^3*x + a^2*
b*g^3) - 1/2*A/(b^3*g^3*x^2 + 2*a*b^2*g^3*x + a^2*b*g^3)

________________________________________________________________________________________

Fricas [A]  time = 0.991217, size = 562, normalized size = 3.72 \begin{align*} -\frac{2 \, A b^{2} c^{2} - 4 \, A a b c d + 2 \, A a^{2} d^{2} - 2 \,{\left (B b^{2} c d - B a b d^{2}\right )} n x +{\left (B b^{2} c^{2} - 4 \, B a b c d + 3 \, B a^{2} d^{2}\right )} n + 2 \,{\left (B b^{2} c^{2} - 2 \, B a b c d + B a^{2} d^{2}\right )} \log \left (e\right ) - 2 \,{\left (B b^{2} d^{2} n x^{2} + 2 \, B a b d^{2} n x -{\left (B b^{2} c^{2} - 2 \, B a b c d\right )} n\right )} \log \left (\frac{b x + a}{d x + c}\right )}{4 \,{\left ({\left (b^{5} c^{2} - 2 \, a b^{4} c d + a^{2} b^{3} d^{2}\right )} g^{3} x^{2} + 2 \,{\left (a b^{4} c^{2} - 2 \, a^{2} b^{3} c d + a^{3} b^{2} d^{2}\right )} g^{3} x +{\left (a^{2} b^{3} c^{2} - 2 \, a^{3} b^{2} c d + a^{4} b d^{2}\right )} g^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^3,x, algorithm="fricas")

[Out]

-1/4*(2*A*b^2*c^2 - 4*A*a*b*c*d + 2*A*a^2*d^2 - 2*(B*b^2*c*d - B*a*b*d^2)*n*x + (B*b^2*c^2 - 4*B*a*b*c*d + 3*B
*a^2*d^2)*n + 2*(B*b^2*c^2 - 2*B*a*b*c*d + B*a^2*d^2)*log(e) - 2*(B*b^2*d^2*n*x^2 + 2*B*a*b*d^2*n*x - (B*b^2*c
^2 - 2*B*a*b*c*d)*n)*log((b*x + a)/(d*x + c)))/((b^5*c^2 - 2*a*b^4*c*d + a^2*b^3*d^2)*g^3*x^2 + 2*(a*b^4*c^2 -
 2*a^2*b^3*c*d + a^3*b^2*d^2)*g^3*x + (a^2*b^3*c^2 - 2*a^3*b^2*c*d + a^4*b*d^2)*g^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*ln(e*((b*x+a)/(d*x+c))**n))/(b*g*x+a*g)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.57075, size = 351, normalized size = 2.32 \begin{align*} \frac{B d^{2} n \log \left (b x + a\right )}{2 \,{\left (b^{3} c^{2} g^{3} - 2 \, a b^{2} c d g^{3} + a^{2} b d^{2} g^{3}\right )}} - \frac{B d^{2} n \log \left (d x + c\right )}{2 \,{\left (b^{3} c^{2} g^{3} - 2 \, a b^{2} c d g^{3} + a^{2} b d^{2} g^{3}\right )}} - \frac{B n \log \left (\frac{b x + a}{d x + c}\right )}{2 \,{\left (b^{3} g^{3} x^{2} + 2 \, a b^{2} g^{3} x + a^{2} b g^{3}\right )}} + \frac{2 \, B b d n x - B b c n + 3 \, B a d n - 2 \, A b c - 2 \, B b c + 2 \, A a d + 2 \, B a d}{4 \,{\left (b^{4} c g^{3} x^{2} - a b^{3} d g^{3} x^{2} + 2 \, a b^{3} c g^{3} x - 2 \, a^{2} b^{2} d g^{3} x + a^{2} b^{2} c g^{3} - a^{3} b d g^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^3,x, algorithm="giac")

[Out]

1/2*B*d^2*n*log(b*x + a)/(b^3*c^2*g^3 - 2*a*b^2*c*d*g^3 + a^2*b*d^2*g^3) - 1/2*B*d^2*n*log(d*x + c)/(b^3*c^2*g
^3 - 2*a*b^2*c*d*g^3 + a^2*b*d^2*g^3) - 1/2*B*n*log((b*x + a)/(d*x + c))/(b^3*g^3*x^2 + 2*a*b^2*g^3*x + a^2*b*
g^3) + 1/4*(2*B*b*d*n*x - B*b*c*n + 3*B*a*d*n - 2*A*b*c - 2*B*b*c + 2*A*a*d + 2*B*a*d)/(b^4*c*g^3*x^2 - a*b^3*
d*g^3*x^2 + 2*a*b^3*c*g^3*x - 2*a^2*b^2*d*g^3*x + a^2*b^2*c*g^3 - a^3*b*d*g^3)